

A Sigma-1 Receptor Selective Analogue of BD1008. A Potential Substitute for (+)-Opioids in Sigma Receptor Binding Assays

Dean Y. Maeda, a Wanda Williams, b Wayne D. Bowen b and Andrew Coop a,*

^aDepartment of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 North Pine Street, Baltimore, MD 21201, USA

^bLaboratory of Medicinal Chemistry, National Institute of Digestive, Diabetes and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA

Received 3 September 1999; accepted 4 October 1999

Abstract—A simple, achiral monoamine sigma-1 (σ_1) receptor selective ligand ($\sigma_2 K_i / \sigma_1 K_i \ge 2000$) is described, which could replace the chiral (+)-pentazocine or dextrallorphan as a σ_1 masking agent in σ_2 binding assays. © 1999 Elsevier Science Ltd. All rights reserved.

The sigma (σ) receptor was first described by Martin as a subtype of opioid receptors, based on the actions of racemic benzomorphans such as (±)SKF10,047.1 However, the fact that (\pm) SKF10,047 is a nonspecific ligand led to confusing pharmacological interpretations, where the effects due to interaction with opioid and phencyclidine sites were viewed as σ mediated effects.² It is now accepted that the σ receptor system consists of at least two subtypes, namely σ_1 and σ_2 , with pharmacological profiles distinct from any known receptor class.³ The σ_1 receptor was recently cloned, and represents a novel protein.⁴ The σ_2 receptor has yet to be cloned, and work is limited due to the paucity of selective ligands and the lack of a radiolabeled selective ligand for binding assays.³ At present, σ_1 binding affinity is assessed by displacement of the σ_1 selective [³H]-(+)-pentazocine,³ and σ_2 affinity is assessed through the displacement of non-selective [3H]-ditolylguanidine ([3H]-DTG) in the presence of cold (+)-pentazocine or dextrallorphan to mask σ_1 sites.^{3,5} Obviously, the use of a chiral material simply to block σ_1 sites is not ideal. Although the development of a σ_2 selective radiolabel is a major goal in this area, the current σ_2 procedure could be improved by the development of an inexpensive achiral ligand with high σ_2/σ_1 selectivity to block σ_1 sites. Herein, we report the initial preparation and evaluation of a novel monoamine (AC915) with the above characteristics and a σ_2/σ_1 selectivity of >2000-fold.

BD1008 (1) is a high affinity σ_1 and σ_2 ligand with great selectivity over other receptor systems (Table 1).⁶ The fact that similar phenylpentylamines prepared by Glennon⁷ displayed excellent σ_1 affinity, led to the conclusion that the central basic nitrogen is not essential for σ_1 affinity.⁸ However, masking the central basic nitrogen as an amide, led to ligands of reduced σ_1 and σ_2 affinity,⁹ showing that an amide is detrimental to σ_1 affinity in this series. Thus, considering that a simple and economical synthesis was required, it was decided to investigate the removal of the nitrogen completely and introduce an ester.

Chemistry and Pharmacology

1-(2-Hydroxyethyl)pyrrolidine was coupled with 3,4-dichlorophenylacetic acid by the use of DCC and DMAP in CHCl₃ at ambient temperature overnight to give **2**, which was isolated by HCl extraction (1 M) and oxalic acid salt formation from acetone (mp 164–165 °C). ¹⁰

^{**}Corresponding author. Tel.: +1-410-706-2029; fax: +1-410-706-

Table 1. Binding affinities of 1, 2 and (+)-pentazocine at sigma receptors

	K_{i} (nM) \pm SEM		
Compound	$\sigma_1{}^a$	σ_2^{b}	σ_2/σ_1
2 (AC915) 1 BD1008	4.89 ± 0.29 2.2 ± 0.65	> 10,000 8.10 ± 2.2	2040
(+)-Pentazocine	3.1 ± 0.3	1542 ± 313	500

^aDisplacement of ³[H]-(+)-pentazocine.

2 was evaluated in competition assays at σ_1 and σ_2 sites (Table 1) using methods reported previously.^{3,5}

These data show that **2** has only a 2-fold lower σ_1 affinity than BD1008, but the introduction of the ester has abolished σ_2 affinity, to give a compound of >2000-fold selectivity for σ_1 receptors. Thus, it appears that the central nitrogen of **1** is not essential for recognition at σ_1 , a finding in agreement with Glennon, but is essential for recognition at σ_2 .

The removal of the central amine of BD1008, and replacement with an ester has yielded a highly-selective achiral σ_1 ligand, which can be easily and economically prepared without the need for chromatography. Thus, 2

(AC915) has the required properties to replace the expensive (+)-opioids as a masking agent in σ_2 binding assays.

References and Notes

- 1. Martin, W. R.; Eades, C. E.; Thompson, J. A.; Huppler, R. E. *J. Pharmacol. Exp. Ther.* **1976**, *197*, 517.
- 2. Walker, J. M.; Bowen, W. D.; Walker, F. O.; Matsumoto, R. R.; de Costa, B. R.; Rice, K. C. *Pharmacol. Rev.* **1990**, *42*, 355.
- 3. Quirion, R.; Bowen, W. D.; Itzhak, Y.; Junien, J. L.; Musacchio, J. M.; Rothman, R. B.; Su, T. P.; Tam, S. W.; Taylor, D. P. A. *Trends Pharmacol. Sci.* **1992**, *13*, 85.
- 4. Hanner, M.; Moebius, F. F.; Flandorfer, A.; Knaus, H. G.; Striessnig, J.; Kempner, E.; Glossman, H. *Proc. Natl. Acad. Sci. USA* **1996**, *93*, 8072.
- 5. Hellewel, S. B.; Bruce, A.; Feinstein, G.; Orringer, J.; Williams, W.; Bowen, W. D. Eur. J. Pharmacol. 1994, 268, 9.
- 6. de Costa, B. R.; Radesca, L.; Paolo, L. D.; Bowen, W. D. *J. Med. Chem.* **1992**, *35*, 38.
- 7. El-Ashmawy, M.; Ablordeppey, S. Y.; Issa, H.; Gad, L.; Fisher, J. B.; Burke Howie, K. J.; Glennon, R. A. *Med. Chem. Res.* **1992**, *2*, 119.
- 8. The procedure used in ref 7 is known to predominantly measure σ_1 affinity. See ref 3.
- 9. Zhang, Y.; Williams, W.; Torrence-Campbell, C.; Bowen, W. D.; Rice, K. C. *J. Med. Chem.* **1998**, *41*, 4950.
- 10. Spectra were consistent with structure 2; the salt gave a satisfactory microanalysis ($\pm 0.4\%$).

^bDisplacement of ³[H]-DTG in the presence of dextrallorphan.